EXERCICES DE CHIMIE GENERALE (cinétique)

Exercice 1 (9.1.1)

Soit la réaction de décomposition

$$Ni(CO)_4(g) \rightarrow Ni(s) + 4CO(g)$$

- a) Comment la vitesse de disparition de Ni(CO)₄ est-elle reliée à celle de formation de CO?
- b) Si la vitesse d'apparition de CO est de 2,4·10⁻³ mol L⁻¹ min⁻¹, quelle est la vitesse de disparition de Ni(CO)₄ au même instant ?

Exercice 2 (9.1.5)

L'étude cinétique de la réaction aux conditions initiales

$$2 \text{ NO(g)} + 2 \text{ H2(g)} \rightarrow \text{ N2(g)} + 2 \text{ H2O(g)}$$

donne les résultats suivants :

Numéro de l'expérience	$[NO] \atop \{ mol \ L^{-1} \}$	[H2] {mol L ⁻¹ }	Vitesse de formation de N2 {mol L ⁻¹ min ⁻¹ }
1	1,0	1,0	0,15
2	1,0	2,0	0,30
3	1,0	3,0	0,45
4	2,0	3,0	1,80
5	3,0	3,0	4,05

Déterminer les ordres partiels par rapport à chacun des réactifs, l'ordre global et la loi de vitesse de la réaction.

Exercice 3

Soit la réaction de décomposition de N2O5 à 318 K

$$N_2O_5(g) \rightarrow 2 NO_2(g) + 0.5 O_2(g)$$

La constante de vitesse est égale à 5,0·10⁻⁴ s⁻¹. L'énergie d'activation de cette réaction est de 100 kJ/mol

- a) Déterminer l'ordre de réaction.
- b) Quel pourcentage de N2O5 initialement présent est décomposé en 45 minutes à 318 K?
- c) Calculer la constante de vitesse à 332 K.
- d) Quelle est la demi-vie à 332 K.

Exercice 4

Pour une réaction d'ordre 1, le temps de demi-vie de la réaction, $t_{1/2}$, vaut 3000 s à la température de 313 K et 600 s à 333 K

- a) Calculer l'énergie d'activation de la réaction
- b) A quelle température doit-on effectuer la réaction pour qu'il ne reste que 25% du réactif après 1200 s

Exercice 5

Soit la réaction d'ordre 2 suivante :

$$A \rightarrow 2 B$$

Pour les conditions initiales suivantes $[A]_0 = 0.5$ mol/L et $[B]_0 = 0$ mol/L, on observe que le temps de demi-vie de A vaut 15 min. Considérer que le volume et la température ne changent pas au cours de la réaction.

- a) Calculer la constante de vitesse et la vitesse de réaction lorsque [B] = 0.5 mol/L
- b) Calculer le temps nécessaire pour que la concentration de B passe de 0.5~mol/L à 0.8~mol/L.